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Abstract: A highly enantio- and diastereoselective synthesis of the top half spirotetronate subunit (3) of 
tetronolide is described. 

Tetronolide (1) is the aglycone of the tetrocarcin group of anti-tumor antibiotics.1 The structure of 

tetronolide was assigned by an X-ray analysis, and the absolute contiguration was determined by Yoshii in a 

recent, pioneering total synthesis.23 Tetronolide is related structurally to kijanolide and chlorothricolide,4 

which have also received considerable attention as synthetic targets.5*6 In continuation of our efforts.6 which 

includes the stereoselective synthesis of the octahydmnaphthalene nucleus Z,b we now report a highly 

stereo- and enantioselective synthesis of the tetnmolide top half spirotetronate substructure 3, an intermediate 

in Yoshii’s synthesis.2.7 This synthesis features the highly exo-selective Diels-Alder reaction of triene 4 and 

the chiral dienophile (R)-5.8 a reaction that we have also utilized in enantioselective syntheses of the 

kijanolide and chlorothricolide spirotetronate substructtnes.~~ 
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Our synthesis of 3 originates from the known enal 79, which is easily prepared in two steps from cis- 

2-buten-l&diol(6) by selective monosilylationlu and then PCC oxidation of the resulting allylic alcohol.11 

Treatment of 7 with the lithium anion of methyl ~(dimethylphosphono)tiglate 812 (generated at -78°C with n- 

BuLi) in a THF-HMPA solvent mixture (5 equiv of HMPA per equiv. of 8) at -7PC to 23°C provided 

trienoate 4 in 69% yield.138 It is essential to use a polar aprotic solvent additive such as HMPA or DMPU in 

order to minimixe the Michael addition of 8 to 7, which is the major pathway in the absence of such additives. 

However, the yield of 4 is only 58% when the reaction is performed in the presence. of 5 equiv. of DMRU, 

and consequently the THE-HMPA mixture is preferred. 
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The key Diels-Alder reaction was performed by heating a mixtum of 4 and 1.5 equiv. of (R)-5 in 

toluene (3 M) at 1 10°C for 90 h. Under these conditions, the desired exo cycloadduct 913a.b ([a]$ -91.3O 

(c = 1.0. CHCl3)) was obtained in 67% yield together with 5% of a second cycloadduct that tentatively has 

been assigned as the end0 isomer, 14% of recovered 4, and 5% of a mixture of products apparently resulting 

from the Diels-Alder dimerization of 4. The reaction is faster at higher temperatures, but the yield of 9 is 

diminished owing to the increased rate of dimerization of 4. Interestingly, no evidence for cycloadducts with 

reversed orientation of 4 and 5 was obtained, suggesting that the enoate substituent is a very powerful 

regiochemical directing element for this bimolecular Diels-Alder reaction.~~~l4 
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Cisdihydroxylation of 9 with catalytic 0904 and 1 .O equiv. of N-metbyhnorpholine oxide (NMO) 

proceedtd with excellent bface stemoselectivity. 15 Treatment of the Esulting diol13@ with MOM-Cl and 

-NEt in CH2Cl2 under standard conditions then provided 1013&b in 78% overall yield. The primary TBS 

ether was cleaved upon exposure to HP-Et3N in CH3CN. and the alcohol was oxidized by using a modified 

Swem protocol.16 When this oxidation was preformed under standard conditions witb Et3N as the base, the 

p-alkoxy aldehyde was obtained as the major product with only minor amounts of enal 11. However, by 

using the more basic DBU in place of Et3N. enal 11 13a.b [m.p. 137-139’C, [a]~22 +93.5” (c = 1.0, CHC13)] 

was obtained directly f&n the oxidation sequence in 78% yield from 10. After protection of the aldehyde as 

a dimethyl acetal (MeOH, cat. PPTs, 92%), the unsaturated ester was selectively reduced by treatment with 

2.2 equiv. of L-Selectride in THF at -2OY! (86% yield). protection of the resulting allylic alcohol as a SEM 

ether (SEM-Cl, i-Pr$Wt, CH2Cl2,23’C) then provided 12 13a$b ([cqD23 +48.i” (C = 1.0, u-1~1~)) in 75% 

yield for the three step sequence from 11. The enantiom&ic purity of these intermediates deriving from 9 

was determined to be 297% e.e. by Mosher ester analysis18 of the subsequently pnpared diol13. 

Me laR=H 
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The synthesis of spirotetronate 3 was completed by methanolysis of 12 with K2CQ3 in MeOH, 

acylation of the resulting hydmxy methyl ester with acetic anhydride (excess) in the presence of DMAP and 

Et* in CH2Cl2, and then Dieckmaun cyclixation of the a-acetoxy ester (LiN(TMSh, THF-I-IMPA. -78’C, 

then warm the enolate solution to 23’0. 19 Addition of I&@04 directly to the reaction mixture6b.d7 then 

provided 313ab (m.p. 654X [a]# +134.3” (c = 2.80. CHCl3)) in 67% overall yield The spectroscopic 

pperb Of Sp~OmrOme 3 WCIE identkd t0 those Of an aUthentk SaI@e ([a]$ +%%o’ (C = 3.(n, 

CHC13)) kindly provided by Professor Yoshli and Dr. Takeda. 

In summary, we have developed efficient and highly diastereoselective syntheses of the tetronolide top 

half spiroteuonate 3. Our efforts to complete a tetronolide synthesis via the coupling of 2 and 3, or their 

immediate precursors, will be reported in due course. 
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